A Theory of Radiation Processes that Adheres Strictly to the Conservation Laws
Year: 2003 Pages: 6
Keywords: non-relativistic quantum mechanics, conservation laws, non-commutation
Electromagnetic Phenomena Vol 3, No. 2, pp. 205-211. It is hypothesized that in order for atomic radiating systems to be in strict compliance with the conservation laws their fields must be quantized. A hydrogen atom is conceived of therefore as the dynamic superposition of three field sources; proton, electron, and photon; and the formalism of non-relativistic quantum mechanics is interpreted as stepwise linear superpositions to the problem of determining the superposition of their partial differential equations. The electron oscillator is introduced to describe energy conservation in emission and absorption processes; and causality is invoked to explain the non-commutation of observables. The model of light that evolves suggests applications for testing the theory in interference phenomena and astronomy.