The Fundamental Nature of Relativity
Year: 2008
Keywords: Relativity
While the confirmed existence of Dark Matter (DM) and Dark Energy (DE) forms a serious and indeed revolutionary problem for physics, they are actually easy to explain if the reality of a fourth macroscopically extended spatial dimension is assumed. The four-dimensionality of space is best portrayed in the case of galactic formation in the early universe, where the DM halo that surrounds spiral galaxies can be modeled. DM is nothing more than spatial curvature in the higher fourth dimension that is not associated with local matter (matter inside the spiral galaxy itself), but is instead the result of an interaction between local matter and the overall curvature of the universe. This model yields a definition of DE that also depends on curvature in the fourth dimension in that it predicts the increasing expansion rate of the universe. The model is strictly geometrical and it does not readily reduce to a simple algebraic formula. Yet the geometry does lead to testable predictions rendering the model falsifiable and a classical algebraic formula that adequately describes the gravitational source of the DM in the geometry of the fourth dimension does emerge upon further consideration of how galaxies evolve by the accretion of material bodies gravitating toward the central core. This formula can also be quantized and relativized and thus leads to a complete unification of physics that once again establish the fundamental nature of relativity.