Enter the content which will be displayed in sticky bar

Abstract


Material Relativity: One Facet of Neo-Ritzian Theory

Robert B. Driscoll
Year: 1990
The observed variation of mass of any elementary particle with its velocity, and the Lorentz transformation, are derived on a neo-Ritzian, i.e., Newtonian, basis. Measurement is defined by the ratio q = Q/q(bar); q is the quantity (distance, mass or time) as a numerical or symbolic value, Q is the physical quantity measured, and q(bar) is the comoving material physical unit adopted for the measurement. Four postulates are adopted, (1) velocity-dependent interactions can be formulated as laws only in the rest frame of ambient matter, (2) any dynamical equation valid in the laboratory rest frame is valid also in any frame unaccelerated therein, (3) each pointlike noncomposite component, or differential of string length, of any elementary particle has speed C = 3 X 1010 cm/s in ambient matter, and (4) Newtonian mechanics represents the quantum substrate. A neo-Ritzian model of the quantum substrate is defined with which the four postulates are compatible, postulate 3 being grounded on it. An experiment is proposed to test the physical reality of the model.