Enter the content which will be displayed in sticky bar
Dr. James Maxlow
local time: 2024-03-28 20:50 (+08:00 )
Dr. James Maxlow (Abstracts)
Titles Abstracts Details
  • Global Expansion Tectonics: A Significant Challenge for Physics (2012) [Updated 1 decade ago]
    by James Maxlow   read the paper:

    A very important geophysical contribution to appreciating modern tectonic theory has been the completion of seafloor magnetic mapping, plus radiometric and paleontological age dating of seafloor crusts beneath all Earth's oceans. This seafloor mapping places finite spatial and temporal constraints on the crustal plate motion history within all of the ocean basins, back to the Early Jurassic Period (approximately 170 million years ago). The magnetic patterns and age dating determined during this seafloor mapping program were historically interpreted as evidence for seafloor growth and spreading, which led to the promotion of Plate Tectonic theory during the 1960s ? a theory that adopts and continues to insist on the fundamental premise that Earth radius remains constant with time. In contrast, by removing this premise and allowing Earth radius to vary with time, this same seafloor mapping provides us with a unique opportunity to accurately measure past Earth radius, to both latitudinally and longitudinally constrain plate assemblages on smaller radius Earth models, and to quantify a rate of increase in crustal surface area, and hence radius throughout Earth history; giving rise to the alternative tectonic theory called Global Expansion Tectonics. Mathematical modeling of this seafloor mapping shows that Earth radius is increasing exponentially through time, and radius is currently increasing at a rate of 22 millimetres per year. While this seafloor mapping quantifies Global Expansion Tectonics as a viable alternative to conventional tectonic theory, a fundamental challenge is presented to physics, whereby an explanation is required to explain how and where additional matter is generated and accumulated within the Earth in order to comply with the increase in Earth radius, as evidenced from empirical seafloor crustal data.


  • Expansion Tectonics: An Overview (2008) [Updated 7 years ago]
    by James Maxlow   read the paper:

    One of the most profound statements the late Professor Sam Warren Carey (Emeritus Professor of Geology from the University of Tasmania) said to me when I first started researching Expansion Tectonics was: If 50 million believe in a fallacy it is still a fallacy. The point he was making was that the validity of any theory does not depend upon the number of people believing it; hence, an accepted theory may still be fundamentally wrong regardless of how many people believe it is correct.


    The Plate Tectonic interpretation of global data, for instance, is based on the fundamental premise that the Earths radius has remained constant, or near constant, throughout history. As will be outlined in this paper, this contrasts with an Expansion Tectonic interpretation of the same global data which is based on the fundamental premise that the Earths radius has been steadily increasing throughout Earth history.


  • Global Expansion Tectonics - A More Rational Explanation (2003) [Updated 7 years ago]
    by James Maxlow   read the paper:

    Global tectonics was introduced a number of decades ago as an all embracing science that seeks to quantify and explain the Earth as a dynamic, interactive entity. As an outcome of this new philosophy we, in all our walks of life, have become accustomed to viewing the Earth globally, be it geology, ecology, climate, population, politics, and so on. Global tectonics however, in its strictest sense, must go beyond the present, or near present, i.e. human scale, and include the geological past, dating back to the formation of the Earth during the Archaean some 4,500,000,000 years ago, and all the Eons in between. In presenting Global Expansion Tectonics it must be realized that the global geological and geophysical database has only now reached the stage where any global tectonic hypotheses can be confidently quantified, challenged, and/or discarded.