Enter the content which will be displayed in sticky bar
Prof. Dr. Burak Polat
local time: 2018-10-17 22:38 (+02:00 )
Prof. Dr. Burak Polat Abstracts
Titles
  • Principles of a Frame Indifferent Classical Electromagnetic Field Theory (2011) [Updated 6 years ago]
    by Burak Polat   read the paper:
  • On Poynting's Theorem and Reciprocity Relations for Discontinuous Fields (2007) [Updated 7 years ago]
    by Burak Polat   read the paper:
  • Spatiotemporal Coupling in Jump Conditions on a Planar Material Sheet (2006) [Updated 7 years ago]
    by Burak Polat   read the paper:

  • Abstracts Details
  • Principles of a Frame Indifferent Classical Electromagnetic Field Theory (2011) [Updated 6 years ago]
    by Burak Polat   read the paper:

    In this three part investigation we provide the mathematical foundations and principles of a frame indifferent classical electromagnetic field theory (FIEFT) for arbitrarily moving material media with arbitrary constitution based on convective and comoving time derivative operators. Part 1 is devoted to the mathematical tools utilized in establishing the field theory. It starts with the description of material points in arbitrary Euclidean motion, which is a characteristic of rigid (non-deforming) bodies and incompressible inhomogeneous fluids in continuum mechanics. Next we establish the mathematical link between spatial and time derivatives of vector fields between Eulerian and Lagrangian frames via coordinate transformations in Euclidean space. Regarding the images of time derivatives of field quantities, we necessarily invoke the convective and comoving time derivatives. We also provide a proof of the representation of the comoving time derivative for scalar and vector density fields along with its certain differential, commutative and integral properties. In Part 2 we provide the axiomatic structure of our field theory where the frame indifferent electromagnetic field equations are obtained directly as images of Maxwell equations of stationary media under Euclidean (aka observer) transformations. The commutative properties derived between spatial differential and comoving time derivative operators help us derive progressive wave equations for the two standard (translational and rotational) types of Euclidean motion. In Part 3 we describe the general formulation of a boundary value problem for an arbitrarily moving object and investigate three canonical problems of practical interest to demonstrate the predictions of FIEFT.


  • On Poynting's Theorem and Reciprocity Relations for Discontinuous Fields (2007) [Updated 7 years ago]
    by Burak Polat   read the paper:

    IEEE Antennas and Propagation Magazine, Vol. 49, No. 4, August 2007. Poynting's theorem and reciprocity relations are investigated, based on the postulate that Maxwell's equations are always valid in the sense of distributions. Three special cases of practical importance in which the fields possess bounded discontinuities on simple (nonmaterial) and material interfaces between two different media are rigorously examined, incorporating the basic properties of the Heaviside unit step function and the Dirac delta distribution for multiple variables.


  • Spatiotemporal Coupling in Jump Conditions on a Planar Material Sheet (2006) [Updated 7 years ago]
    by Burak Polat   read the paper:

    The coupling mechanism between spatial and temporal jumps in electromagnetic field
    quantities on a planar material sheet is investigated based on the theory of distributions. The
    methodology is an extended version of that developed by 2demen for spatial and temporal jumps
    separately.