Enter the content which will be displayed in sticky bar


Classical Explanation for Atomic Phenomena*

Jan Olof Jonson
Year: 2007
The fact that an orbiting electron does not collapse into the nucleus of its parent atom has thus far been considered a major obstacle to a classical interpretation of the stable states of orbiting electrons. Quantum mechanics avoids the very problem by discussing the probability of finding it, a method that confessedly has been very fruitful in the exploring the behaviour of elementary particles. Nonetheless, why should necessarily those two approaches be regarded as each others' enemies? In this paper it is shown that the classical mechanistic approach is still capable of explaining the eternal, circular movement of an electron around a nucleus. It is possible if reformulating the laws of action involved, returning to the simple electrostatic model, based upon Coulomb's law (1785, 1771). Further, in this paper it is also discussed, how electromagnetic radiation due to the de-excitation of excited electrons, orbiting around a positive nucleus, can be explained classically, as a sudden peak in the otherwise zero electric field, due to the inwards spiralling movement connected to the de-excitation. The concept of a distinct particle, the 'photon' is thereby rejected.