Lorentz Contraction of the Coulomb Field: An Experimental Proposal
Year: 1992 Pages: 8
Keywords: Lorentz contraction, Coulomb field, electrodynamics, action-at-a-distance
Despite a number of attempts, the Lorentz contraction has never been directly observed, the worldline-relational or metric "structural" statements of special relativity remain therefore empiricallly unsupported, and the metric nature of spacetime retains an inferential or speculative character. In these circumstances any direct evidence would be of value. It is suggested that a much more easily observable phenomenon than the Lorentz contraction of a material structure be exploited; namely, the contraction of the Coulomb field accompanying a high-speed electron pulse. A proposal is made for a simple laboratory experiment to measure this effect. To lend interest, a modernized version of an alternative electrodynamics due to W. Weber (propounded in the nineteenth century and never observationally refuted), based upon action-at-a-distance, is described and its predictions in the proposed experimental situation are contrasted with those of Lorentz-Einstein. The same is done for the original Weber theory and for a neo-Hertzian version of electromagnetism. The experiment should be "crucial" for deciding among such alternative theories