Enter the content which will be displayed in sticky bar


The Kinetic Theory of Electromagnetic Radiation

Charles Kenneth Thornhill
Year: 1983
It is shown that Planck\'s energy distribution for a black-body radiation field can be simply derived for a gas-like ether with Maxwellian statistics. The gas consists of an infinite variety of particles, whose masses are integral multiples n of the mass of the unit particle, the abundance of n-particles being proportional to n-4. The frequency of electromagnetic waves correlates with the energy per unit mass of the particles, not with their energy, thus differing from Planck\'s quantum hypothesis. Identifying the special wave-speed, usually called the speed of light, with the wave-speed in the 2.7oK background radiation field, leads to a mass 1/2 ? 10-39 (kg) for the unit ether-particle, and an average number of about 360 ether particles per cubic centimetre in the background radiation field, whose density is about 0.2 ? 10-30 (kg)/m3.