Unification of Space-Time-Matter-Energy
Year: 2008 Pages: 14
Keywords: Binding energy, Elementary forces, Energy conservation, Equivalence principle, Minkowski
Appl. Comput. Math. 7(2) (2008), pp. 255-268. A complete description of space-time, matter and energy is given in Einstein's special theory of relativity. We derive explicit equations of motion for two falling bodies, based upon the principle that each body must subtract the mass-equivalent for any change in its kinetic energy that is incurred during the fall. We find that there are no singularities and consequently no blackholes.
A complete description of space-time, matter and energy is given in Einstein's special theory of relativity. We derive explicit equations of motion for two falling bodies, based upon the principle that each body must subtract the mass-equivalent for any change in its kinetic energy that is incurred during the fall. We find that there are no singularities and consequently no blackholes.