Revealing The Mystery of The Galilean Principle of Relativity
Part I: Basic Assertions

Year: 2009

As Galileo has formulated, one cannot detect, once embarked in a

*uniform translational motion,*and not receiving any information from the outside,*how fast*he is moving. Why? No one that we recall of, has worked out the answer of this question, although the*Galilean Principle of Relativity (GPR),*constituted a major ingredient of the Special Theory of Relativity (STR). Thus, consider a quantum mechanical*object of clock mass?*M_{0}*(which is just a mass),*doing a*?clock motion?,*such as*rotation, vibration,*etc, with a*total energy*E_{0}, in a*space of size*. Previously we have established that, if the mass M_{0}is multiplied by an*arbitrary number*, then through the*relativistic*or*non-relativistic*quantum mechanical description of the object*(which ever is appropriate to describe the case in hand)*, the*size*R_{0}of it, shrinks as much, and the*total energy*E_{0},*concomitantly,*increases as much. This*quantum mechanical occurrence*yields, at once, the*invariance*of the*quantity (total energy) x (mass) x (size)*^{2}*with regards to the**mass change*in question, the object being overall at rest; this latter quantity is, on the other hand, as induced by the*quantum mechanical framework,*necessarily strapped to h^{2}, the*square of the Planck Constant.*But this constant is already,*dimension wise,**Lorentz invariant.*Thus, any quantity bearing the dimension of h^{2}, is Lorentz invariant, too. So is then, the quantity*(total energy) x ( mass) x ( size)*Thence, the^{2}, no matter how the size of concern lies, with respect to the direction of uniform translational motion, that would come into play.*quantum mechanical**invariance of the quantity (total energy) x (mass) x (size)*with regards to an^{2}*arbitrary mass change,*comes to be*identical*to the*Lorentz invariance*of this quantity, were the object brought to a uniform translational motion*.*It is this prevalence, which displays, amazingly, the*underlying mechanism,*securing the end results of the STR, and this via quantum mechanics. The*Lorentz invariant architecture, (total energy) x (mass) x (size)*more fundamentally, constitutes the answer of the^{2}*mystery*drawn by the*GPR.*In this article, we frame the basic assertions, which will be used in a subsequent article, to display the*quantum mechanical machinery*making the GPR, and to draw the bridge between the GPR and the*architecture,*we disclose.