Interfacial Thermodynamics: A General Review
Year: 1999
Keywords: Interfacial Thermodynamics
Thermal motion involves significant particle momenta p. Incorporating p into thermodynamics leads to a generalization of the Maxwell-Einstein diffusion force. which is highly significant at interfaces. Determining how this force interacts with electric fields1 has led to new, general consequences: (1) Unification of the theory of conduction in diodes and solar cells. Theory has accurately agreed with extensive experimental data reported by some 27 authors, in the period 195-1978. (2) Revealing that the first and second laws2 require a new, important, universal property: the electrification of interfaces. This paper reviews the basic foundation of this novel thermodynamic formulation, and proceeds to explain numerous consequent phenomena and pictures of experimental observations that confirm this thermodynamically-required property of electrification of surfaces, membranes. and other interfaces.
- M.A. Melehy. "Thermal Momentum in Thermodynamics. Part I: Nature of Pressure. Equilibrium and Nonequilibrium. and Generalization of the Maxwell?Einstein Diffusion Force." Physics Essays. 10.278?303 (1997).
- Ibid. Part 2: "Interfacial Electrification: A New Consequence of thc First and Second Laws," Physics Essays. 11.430-443 (1998.