Enter the content which will be displayed in sticky bar

Abstract


Correlations Leading to Space-time Structure in an Ether

John E. Carroll
Year: 2008
Keywords: Space-time, Structure, Aether
It is proposed that the ether behaves like a coordinate invariant system. By using the general theory of signals in systems, the paper describes a formalism similar to quantum theory, provides a rationale for Lagrangian methods and also discovers how geometric structures naturally form. From the concepts of convolution and correlation used in linear systems it is shown that the multi-vectors of the ?Hestenes' geometric algebra correspond with generalised correlation matrices that link an observer's view of even and odd properties of incoming signals in the ether system. The analysis shows why three spatial dimensions is the lowest dimensionality to give a homogeneous space. Any fourth dimension, even if it were not time, has to behave differently from the other three spatial dimensions and cannot create a homogeneous space. A more speculative approach suggests that 3+1 space-time is embedded in a 3+3 space-time ether. Elsewhere it has been shown that Maxwell's equations could be construed as a necessary consequence of this embedding process, while here a Dirac equation with vector potentials emerges from similar assumptions. Mass is created by correlations in a temporal plane that is transverse to the temporal axis. Future prospects for this generalised theory are discussed.