On Synchronisation of Clocks in Free Fall Around a Central Body
Year: 1997
Keywords: special and general relativity, synchronisation, one-way velocity of light, ether, principle of equivalence
The conventional nature of synchronisation is discussed in inertial frames, where it is found that theories using different synchronisations are experimentally equivalent to special relativity. On the other hand, in accelerated systems only a theory maintaining an absolute simultaneity is consistent with the natural behavior of clocks. The principle of equivalence is discussed, and it is found that any synchronisation can be used locally in a freely falling frame. Whatever the synchronisation chosen, the first derivatives of the metric tensor disapear and a geodesic is locally a straight line. But it is shown that only a synchronisation maintaining absolute simultaneity makes it possible to define time consistently on circular orbits of a Schwarzschild metric.