Enter the content which will be displayed in sticky bar


M?ssbauer Experiments in Rotating Systems Re-analyzed

Alexander L. Kholmetskii
Tolga Yarman
Year: 2008 Pages: 6
Keywords: M?ssbauer Experiment, Rotating Frame
In this paper, we re-analyze the ingenious experiment by K?ndig (measurement of the transverse Doppler shift by means of the M?ssbauer effect) and show that a correct processing of experimental data gives a relative energy shift DeltaE/E of the absorption line different from the value of classically assumed relativistic time dilation for a rotating resonant absorber. Namely, instead of the relative energy shift DeltaE/E = −(1.0065?0.011)v2/2c2 reported by K?ndig (v being the linear velocity of absorber and c being the light velocity in vacuum), we derive from his results DeltaE/E = −(1.192?0.011)v2/2c2. We are inclined to think that the revealed deviation of DeltaE/E from relativistic prediction cannot be explained by any instrumental error and thus represents a physical effect. In particular, we assume that the energy shift of the absorption resonant line is induced not only by the standard time dilation effect, but also by some additional effect missed at the moment, and related perhaps to the fact that resonant nuclei in the rotating absorber represent a macroscopic quantum system and cannot be considered as freely moving particles.