Enter the content which will be displayed in sticky bar

Abstract


Review of Stochastic Electrodynamics, With and Without Spin

Leonardo Bosi
Giancarlo Cavalleri
Francesco Barbero
Ernesto Tonni
Gianfranco Spavieri
Year: 2008 Pages: 8
Keywords: Stochastic Electrodynamics, Spin
The introduction of the ZPF leads to a probability density p0(v) (where v is the electron speed) similar to the Fermi-Dirac distribution, and to a correlation function CG(? ) of the conductance G, which, in a small, unique v interval ?v (where the electrons are at the threshold of runaways) decays as ??" with 0:003 ? " ? 0:007. The corresponding power spectral density turns out to be SG(f) = G2?"N?1(2??m)"f"?1, where f is the frequency, N the total number of electrons in the considered sample, ?m the information transmission time, and ?" a dimensionless quantity depending on electron number density N. For the purest semiconductors, ?" that turns out to be in excellent agreement with the experimental data vs N. The above result also holds for a ?nite sample because the electron di?usion in the small ?v is much more rapid than the drift velocity.